Strong Dynamics and Models of Axion Inflation

Stephen Baker and Mohamed M. Anber

Lewis & Clark College

It appears you don’t have a PDF plugin for this browser. It’s fine…you can click here to download the PDF file.

Abstract
  • We revisit models of natural inflation and show that the single-field effective theory described by the potential V(a)∼cos(a/f) breaks down as the inflaton a makes large-field excursions, even for values of f smaller than the Planck scale. In order to remedy the problem, we modify the potential in order to account for the heavy degrees of freedom (hadrons) that become intertwined with the light inflaton as the latter rolls down its potential. By embedding the low energy degrees of freedom into an ultraviolet complete gauge theory, we argue that the intertwining between the two scales can be explained as the result of a generalized mixed ‘t Hooft anomaly between the discrete chiral symmetry and background fractional fluxes in the baryon number, color, and flavor directions. Further, we study the multi-field inflation and show that it entertains rich dynamics. Inflating near the hilltop excites the hadrons and spoils the slow-roll parameters, in contradistinction with the expectations in the single-field inflation. Nevertheless, we identify a safe zone where inflation can proceed successfully. We determine the conditions under which the Universe inflates by at least 60 e-foldings and inflation leads to a power spectrum and tensor to scalar ratio that are consistent with the Cosmic Microwave Background data.